Friday, January 26, 2024

How to Count to Two: 2 of 2

            Appendix: Diamond Logic

 

          Diamond logic has a new operator: /, called “juxtaposition”, pronounced “but”. This defines four truth values:

                    T/T   =       T      

                    F/F    =       F    ;    these are the “Boolean” values.

                    T/F   =       I

                    F/T   =       J     ;     these are the “paradox” values.

 

          In diamond logic, the positive operators Ù (“and”) and Ú (“or”) operate side-wise:

 (a/b) Ù (c/d)                 =       (a Ù c) / (b Ù d)

 (a/b) Ú (c/d)                 =       (a Ú c) / (b Ú d)

Negation flips sides:

~ (a/b)                           =         (~ b) / (~ a)

This creates fixedpoints for negation:

          ~(t/f)           =       (~ f) / (~ t)           =       t/f

          ~(f/t)           =       (~ t) / (~ f)           =       f/t

Thus paradox is possible in diamond logic.

 

Call a function “harmonic” if it can be defined from Ù, Ú, ~, and the four values t, i, j, f. They include:

          a nor b                 =       ~ (a Ú b)    =       ~a Ù ~ b

          a nand b              =       ~ (a Ù b)    =       ~a Ú ~ b

 

Here are diamond’s truth tables for ‘not’, ‘and’, ‘or’, and ‘but’:

 x:  ~ x:   Ù y:       Ú y:        but y:

            t f i j    t f i j    t f i j 

     t     f    t f i j    t t t t    t i i t  

     f     t    f f f f    t f i j    j f f j  

     i     i    i f i f    t i i t    t i i t  

     j     j    j f f j    t j t j    j f f j  

     

          Diamond logic has a Brownian-style notation: “bracket-form  algebra”, which has four forms ( [], [[]], 6, and 9 ), and two operations (ab and [a]), with these rules:

                   ab               =       ba

                   [] a             =       []

                   [[]] a           =       a

                   a a              =       a

                   69               =       []

                   [[[]]]           =       []

                   [6]              =       6

                   [9]              =       9

          Bracket forms match diamond’s logic tables these ways:

          []                 ::       T       ;        T       ;        F       ;        F

          [[]]              ::       F       ;        F       ;        T       ;        T

          6                 ::       I        ;        J        ;        I        ;        J

          9                 ::       J        ;        I        ;        J        ;        I

          ab               ::       aÚb   ;        aÚb   ;        aÙb   ;        aÙb

          [[a][b]]       ::       aÙb   ;        aÙb   ;        aÚb   ;        aÚb

          [a]              ::       ~ a    ;        ~a      ;        ~a      ;        ~a

          Logic circuits can operate in diamond logic, via the “dual-rail” system. Replace each wire by a pair of wires, and each gate by a pair of gates. AND and OR gate-pairs operate separately on the sides; NOT, NOR and NAND gate-pairs swap sides after operating.

 

Juxtaposition defines the intermix function:

J(a,b)                    =       ( a/b , b/a )

Note:  J(J(a,b)) = (a,b)

 ~ J ( a , b )  =  J ( ~ b , ~ a )

J(a,b) Ú J(A,B)  =  J(a Ú A, b Ú B)

J(a,b) Ù J(A,B)  =  J(a Ù A, b Ù B)

          In terms of bracket forms:

                   [ (a/b) ]      =       [b] / [a]

                   (a/b)(c/d)   =       (ac)/(bd)

 

          Diamond logic obeys the DeMorgan Laws: commutativity, associativity, identities, attractors and distribution for ‘and’ and ‘or’; double negation and the De Morgan identities for ‘not’.

          But not the Law of the Excluded Middle:

          (a Ù ~ a)  =  F     ;        (a Ú ~ a)  =  T

Instead diamond logic obeys Complementarity:

          (I Ù ~ I)  Ú  (J Ù ~ J)  =  T    ;        (I Ú ~ I) Ù  (J Ú ~ J)  =  F

        Complementarity defies the Law of the Excluded Middle, but not directly enough to collapse logic to a single value. Instead it shares contradiction between two paradox values.

 

          Theorem:    Complete Deduction

The De Morgan laws, plus Complementarity, prove all identity equations in diamond logic.

 

Theorem:  Complete Self-Reference

If F(x) is a n-component harmonic function on n variables:

          F(x)   =  ( F1(x1,…,xn) , … , Fn(x1,…,xn) )

then F has a fixedpoint; that is, a vector s = (s1,…,sn) such that

          F(s)  =  s 

So any re-entrant form can be given a value. For instance, here is the “First Brownian Modulator”:

 

_________________________________________

___________________________________     |

_____________________________     |     |

_______________________     |     |     |

_________________     |     |     |     |

_____________   |     |     |     |     |

_________   |   |     |     |     |     |

_____   |   |   |     |     |     |     |

    | | | | | | |     |  |  |   | |  |  |

| Z |_|_|_| | | | Z   |__|__|___| |  |  |

|     | |_____|_|________|  |        |  |

|     |       | |___________|________|  |

|     |_______|_____________|           |

|_____________|_________________________|

 

 

It equals this bracket-form system:

 

a        =        [ zd ]

                   b       =        [ ag ]

c        =        [ db ]  =  z/2

d       =        [ cf ]

e       =        [ cz ]

f        =        [ eh ]

g        =        [ ah ]

h       =        [ eg ]

 

Let (A,E) = J(a,e) ; so that A = a/e,  and  E = e/a.

Also let (B,F) = J(b,f) ; (C,D) = J(c,d) ; (G,H) = J(g,h)

This is “diffracting the modulator against itself”.

 

Then:         A       =        [ C z ]

E        =        [ D z ]

B       =        [ E H ]

F        =        [ A G ]

C       =        [ C F ]

D       =        [ D B ]

G       =        [ G E ]

H       =        [ H A ]

z/2    =        C/D

 

Write this in a cycle to get a “Brownian Rotor”:

 

A       =        [ C z ]

H       =        [ A H ]

B       =        [ H E ]

D       =        [ B D ]

E        =        [ D z ]

G       =        [ E G ]

F        =        [ G A ]

C       =        [ F C ]                                                        

z/2    =        C/D

 

See Illustrations 1, 2, 3.

 

 

 

Now consider Kauffman’s Modulator:

 

a        =        [ bdz ]

b       =        [ ae ]

c        =        [ df ]

d       =        [ acz ]

e       =        [ af ]  =  z/2

f        =        [ de ]

 

Let (A,D) = J(a,d) ; so that A = a/d,  and  D = d/a.

Also let (B,C) = J(b,c) ; (E,F) = J(e,f)

This too is diffracting the modulator against itself.

 

Then:         A       =        [ A C z ]

D       =        [ D B z ]

B       =        [ D F ]

C       =        [ A E ]

E        =        [ D E ]

F        =        [ A F ]

z/2    =        E/F

 

Write this in a cycle to get a “Kauffman Rotor”:

                                                                  

A       =        [ C A z ]

F        =        [ A F ]

B       =        [ F D ]

D       =        [ B D z ]

E        =        [ D E ]

C       =        [ E A ]

z/2    =        E/F

           See Illustrations 4, 5, 6.

 

Illustrations

 

 

1. Brownian Modulator

 

In this circuit diagram, the triangles denote NOR gates:

 

 

2. Brownian Rotor

 

This circuit diagram is dual-rail, for diamond logic. The triangles denote diamond NOR gates. J denotes an intermix gate. The table shows four stable states of the system, which are successive in a period-4 cycle, when the input z toggles between T and F four times. 


z        A       H       B       D       E        G       F        C       C/D

---------------------------------------------------------------------------

T        F        i         i         i         F        J        J        J        F

F        J        J        F        i         i         i         F        J        F

T        F        J        J        J        F        i         i         i         T

F        i         i         F        J        J        J        F        i         T

  

 

        3. Brownian Rotor Rotating

3. Kauffman Modulator

 

 

4. Kauffman Rotor

  

 z        A       F        B       D       E        C                 E/F

----------------------------------------------------------------

 F        i         i         F        J        J        F                 F

T        F        i         i         F        J        J                  F

F        J        J        F        i         i         F                 T

T        F        J        J        F        i         i                  T

         

             6. Kauffman Rotor Rotating

 

Bibliography

 

 

Nathaniel  Hellerstein

“Diamond, a four-valued approach to the problem of Paradox”

U.C. Berkeley: Doctoral thesis, 1984.

 

Diamond, A Paradox Logic

Singapore: World Scientific Publishing Co. Ltd., 1997

 

Delta, A Paradox Logic

Singapore: World Scientific Publishing Co. Ltd., 1997

 

Diamond, A Paradox Logic, 2nd Edition

Singapore: World Scientific Publishing Co. Ltd., 2010

 

 

Louis Kauffman

          “Knot Automata”

          Boston: 24th International Symp. on Multiple Valued Logic, 1994

 

 

Louis Kauffman and Francisco Varela

“Form Dynamics”

Journal of Social and Biological Structure, 1980, v.3, pp.171-206.

 

 

George Spencer-Brown

Laws of Form

New York: the Julian Press, 1979.

No comments:

Post a Comment