Carrollian Logistic Identities
This is an addendum to last Friday’s blog about logistics. Here
are some logistic identities:
(x+y) ~ (x <+> y) =
(x~y) + ( x <+> 1/x <+> y <+> 1/y )
(x <+> (y~z) ) + (y <+> (z~x) ) + (z
<+> (x~y) ) =
1/(x<+>x<+>y<+>y<+>z<+>z) <+>
(M(x,y,z)+M(x,y,z))
(x + (y<+>z)) <+> (y + (z<+>x)) <+> (z + (x<+>y)) =
M(x,y,z) <+> M(x,y,z)
M(x,y,z) <+> M(x,y,z)
(x <+> (y+z)) + (y <+> (z+x)) + (z <+> (x+y)) =
M(x,y,z) + M(x,y,z)
M(x,y,z) + M(x,y,z)
M(x,y,y) = ( ( x <+> y ) + y ) <+> (x + x + y )
M(x,y,y) = ( ( x + y ) <+> y )
+ (x <+> x <+> y )
When interpreted as boolean logic equations, you get these
identities:
(x and y) iff (x or y)
equals
(x iff y) and (x or not x or y or not y)
(x or (y iff z)) and (y or (z iff x)) and (z or (x iff y)) equals
not (x or x or y or y or z or z) or ((most of x,y,z) and (most of x,y,z))
(x
and (y or z)) or (y and (z or x)) or (z and (x or y)) equals
(most of x,y,z) or (most of x,y,z)
(x or (y and z)) and (y or (z and x)) and (z or (x and y)) equals
(most of x,y,z) and (most of x,y,z)
Most of x,y,y equals ( (x or y) and y ) or ( x and x and y )
(most of x,y,z) or (most of x,y,z)
(x or (y and z)) and (y or (z and x)) and (z or (x and y)) equals
(most of x,y,z) and (most of x,y,z)
Most of x,y,y equals ( (x or y) and y ) or ( x and x and y )
Most
of x,y,y equals ( (x and y) or y )
and ( x or x or y )
Because of their surrealistic sound, I propose that we call these
identities “Carrollian”.
No comments:
Post a Comment