Thursday, July 19, 2018

Laws of Triple Form: 9 of 12


     Chapter 8 : Orderings

          8A. 6 orders on the three forms

Juxtaposition is the minimum operator in the order   []  <  <>  <  {}
There are six minimum operators, one for each ordering of the three forms:
xy                         =    minimum on 1<6<0
{[ [{x}]  [{y}] ]}   =    minimum on 0<1<6
[{ {[x]}  {[y]} }]   =    minimum on 6<0<1
These are the rotated juxtapositions.

[[x][y]]                   =     minimum on 0<6<1
{{x}{y}}                        =     minimum on 6<1<0
<<x><y>>             =     minimum on 1<0<6
These are the reflected juxtapositions.

Call each of these operators  &ab, where a is the attractor and b is the identity.
xy                                  =     minimum on 1<6<0      =     x  &10  y
{[ [{x}]  [(y)] ]}    =     minimum on 0<1<6      =     x  &06  y
[{ {[x]}  {[y]} }]   =     minimum on 6<0<1      =     x  &61  y
[[x][y]]                  =     minimum on 0<6<1      =     x  &01  y
{{x}{y}}              =     minimum on 6<1<0      =     x  &60  y
<<x><y>>            =     minimum on 1<0<6      =     x  &16  y

They have these laws:
Attractor:             x &ab    a
          Identity:               x &ab    x
          Recall:                  x &ab    x
Commutativity:   x &ab y   =  y &ab x
Associativity:       x &ab (y &ab z)     =       (x &ab y) &ab z

These identities define each operator’s truth table.

x &ab y           a   a#b   b  _            
a                    a     a     a
a#b                a   a#b   a#b
b                    a   a#b   b
x &FT y       F       I         T               
F                 F       F       F
I                  F       I         I
T                 F       I         T

x &TF y       F       I         T    
F                 F       I         T
I                  I         I         T
T                 T       T       T

x &TI y       F       I         T    
F                 F       F       T
I                  F       I         T
T                 T       T       T

x &IT y       F       I            
F                 F       I         F
I                  I         I         I
T                 F       I         T

x &IF y        F       I         T    
F                 F       I         T
I                  I         I         I
T                 T       I         T

x &FI y        F       I         T    
F                 F       F       F
I                  F       I         T
T                 F       T       T



Generalized De Morgan Law:

If p(x) is any permutation of the three forms, then for all x and y;
p( x  &ab  y  )   =  p(x)  &p(a),p(b)  p(y) 

Proof is by cases.

No comments:

Post a Comment