From "Cybernetics & Human
Knowing", Vol. 24 (2017), No. 3-4, pp. 161-188
8.
Diffracted Modulators are Rotors
Now let’s analyze these modulators by diffracting them.
Start with the Naive Modulator:
a = [ hz ]
b = [ gz ]
c = [ ad ]
d = [
bc ]
e = [
c [z] ]
f = [ d [z] ]
g = [ eh ]
h = [ fg ]
Let (A,B) = J(a,b) ; so that A = a/b, and B
= b/a.
Also let (C,D) = J(c,d) ; (E,F) = J(e,f) ; (G,H) =
J(g,h)
Then:
A = [ G z ]
B = [ H z ]
C = [ C B ]
D = [ D A ]
E = [ C [z] ]
F = [ D [z] ]
G = [ G E ]
H = [ H F ]
z/2 = G/H
We can write this in a cycle, to get the “NaĂ¯ve Rotor”:
A = [
G z ]
D = [
A D ]
F = [
D [z] ]
H = [
F H ]
B = [
H z ]
C = [
B C ]
E = [
C [z] ]
G = [
E G ]
z/2 = G/H
This diagram is of a diamond circuit; gates and wires are
doubled, with a twist at each gate.
z A D F H B C E G G/H
--------------------------------------------------------------------------------
1 0 i i i 0 j j j
0
0 j j 0 i i i 0 j
0
1 0 j j j 0 i i i
1
0 i i 0 j j j 0 i
1
Now try the First Brownian Modulator:
a = [ zd ]
b = [
ag ]
c = [ db ]
= z/2
d = [ cf ]
e = [ cz ]
f = [ eh ]
g = [ ah ]
h = [ eg ]
Let (A,E) = J(a,e) ; so that A = a/e, and E
= e/a.
Also let (B,F) = J(b,f) ; (C,D) = J(c,d) ; (G,H) =
J(g,h)
Then:
A = [ C z ]
E = [ D z ]
B = [ E H ]
F = [ A G ]
C = [ C F ]
D = [ D B ]
G = [ G E ]
H = [ H A ]
z/2 = C/D
Written in a cycle, you get a “Brownian Rotor”:
A = [
C z ]
H = [
A H ]
B = [
H E ]
D = [
B D ]
E = [
D z ]
G = [
E G ]
F = [
G A ]
C = [
F C ]
z/2 = C/D
z A H B D E G F C C/D
--------------------------------------------------------------------------------
1 0 i i i 0 j j j 0
0 j j 0 i i i 0 j 0
1 0 j j j 0 i i i 1
0 i i 0 j j j 0 i 1
Now try Kauffman’s Modulator:
a = [ bdz ]
b = [ ae ]
c = [ df ]
d = [ acz ]
e = [ af ]
= z/2
f = [ de ]
Let (A,D) = J(a,d) ; so that A = a/d, and D
= d/a.
Also let (B,C) = J(b,c) ; (E,F) = J(e,f)
Then:
A = [ A C z ]
D = [ D B z ]
B = [ D F ]
C = [ A E ]
E = [ D E ]
F = [ A F ]
z/2 = E/F
Written
in a cycle, you get a “Kauffman Rotor”:
A = [
C A z ]
F = [
A F ]
B = [
F D ]
D = [
B D z ]
E = [
D E ]
C = [
E A ]
z/2 = E/F
z A F B D E C E/F
------------------------------------------------------------------------
1 0 i i 0 j j
0
0 j j 0 i i 0
1
1 0 j j 0 i i
1
0 i i 0 j j 0
0
The paradox values I and J spin around the
rotor, bearing phase information.
No comments:
Post a Comment