Diophantine Reciprocal Sums
Define reciprocal addition [1/+] thus:
c = a [1/+] b
if and only if
1/c = 1/a + 1/b
if and only if
c = (ab) / (a+b)
Theorem:
If p and q are such that pq = c^2
Then (c+p) [1/+] (c+q) = c
Proof:
(c+p) [1/+] (c+q)
= (c+p)(c+q) / (c+p+c+q)
= (c^2+pc+qc+pq) / (2c+p+q)
= (c^2+pc+qc+c^2) / (2c+p+q)
= (2c^2+(p+q)c) / (2c+p+q)
= c(2c+(p+q)) / (2c+p+q)
= c
Example: c=10;
c^2 = 100 = 1*100 = 2*50 = 4*25 = 5*20 = 10*10
Therefore:
10 = 11 [1/+] 110
= 12 [1/+] 60
= 14 [1/+] 35
= 15 [1/+] 30
= 20 [1/+] 20
Example: c=9;
c^2 = 81 = 1*81 = 3*27 = 9*9
Therefore:
9 = 10 [1/+] 90 = 12 [1/+] 36 = 18 [1/+] 18
Example: c=6;
c^2 = 36 = 1*36 = 2*18 = 3*12 = 4*9 = 6*6
Therefore:
6 = 7 [1/+] 42
= 8 [1/+] 24
= 9 [1/+] 18
= 10 [1/+] 15
= 12 [1/+] 12
Example: c=30;
c^2 = 900 = 1*900 = 2*450 = 3*300 = 4*225 = 5*180 = 6*150 = 9*100 = 10*90 = 12*75 = 15*60 = 18*50 = 20*45 = 30*30
Therefore:
30 = 31 [1/+] 930
= 32 [1/+] 480
= 33 [1/+] 330
= 34 [1/+] 255
= 35 [1/+] 210
= 36 [1/+] 180
= 39 [1/+] 130
= 40 [1/+] 120
= 42 [1/+] 105
= 45 [1/+] 90
= 48 [1/+] 80
= 50 [1/+] 75
= 55 [1/+] 66
= 60 [1/+] 60
No comments:
Post a Comment