Collatz Variations
Consider
the mapping:
N --->
N/2 if N is even
N --->
3N+1 if N is odd
When
iterated, does every number end in the cycle 1--> 4 --> 2 --> 1 ? That is the Collatz Conjecture.
Answer:
No, if you include non-positive numbers.
0 -->
0
-1
--> -2 --> -1
-5
--> -14 --> -7 --> -20 --> -10 --> -5
-17
--> -50 --> -25 --> -74 --> -37 --> -110 --> -55 --> -164
--> -82 --> -41 --> -122 --> -61 --> -182 --> -91 --> -272
--> -136 --> -68 --> -34 -->
-17
and
so on. Are there infinitely many cycles?
Now
consider this variant of the Collatz function:
N --->
N/2 if N is even
N --->
3(N+1) if N is odd
First
add one, then times three!
6
--> 3 --> 12 --> 6
16
--> 8 --> 4 --> 2 --> 1 --> 6
20
--> 10 -->5 -->18 --> 9 --> 30 --> 15 --> 48 -->
24 --> 12 --> 6
Does
it always end with 6-->3-->12-->6 ?
No:
0
--> 0
-3
--> -6 --> -3
-30
--> -15 --> -42 --> -21 --> -60 --> -30
Are
there infinitely many cycles?
No comments:
Post a Comment