Friday, August 4, 2023

Leibnitz Prime Function

            Leibnitz Prime Function

 

Define the function N’ on the integers by the Leibnitz rule:

(ab)’          =       a’b + ab’

Exercise for the student: Prove from this:

(a^n)’        =       n (a^(n-1)) a’

0’      =       1’      =       (-1)’           =       0

(-a)’           =       -(a’)

 

To complete the definition, assume also:

(Prime)’    =       1

This is not linear: (2+3)’=5’=1 ; but 2’+3’=1+1= 2

 

N                                                                N’

1                                                       =       0

2                                                       =       1

3                                                       =       1

4                 2*(2^1)*2’                     =       4

5                                                       =       1

6                 2’3+2*3’                      =       5

7                                                       =       1

8                 3*(2^2)*2’                   =       12

9                 2*(3^1)*3’                   =       6

10               2’5+5’2                        =       7

11                                                     =       1

12               (2^2)’3+(2^2)*3’        =       16

13                                                     =       1

14               2’7 + 7’2                      =       9

15               3’5 + 5’3                      =       8

16               4*(2^3)*2’                   =       32

17                                                     =       1

18               (3^2)’*2 + (3^2)*2’    =       21

19                                                     =       1

20               (2^2)’*5 + (2^2)*5’    =       24

21               3’7 + 7’3                      =       10

22               2’11+11’2                    =       13

23                                                     =       1

24               8’3+3’8 = 36+8           =       44              

25               2*5*5’                          =       10

26               2’13+13’2                    =       15

27               3*(3^2)*3’                   =       27

28               4’7+7’4  =  28+4         =       32

29                                                     =       1

30               2’*3*5+2*3’*5+2*3*5’  =  31

31                                                     =       1

32               5*2^4*2’                      =       80

33               3’11+11’3                    =       14

34               2’17+17’2                    =       19

35               5’7 + 7’5                      =       12

36               4’9+9’4  =  36+24       =       60

37                                                     =       1

38               2’19+19’2                    =       21

39               3’13 + 13’3                  =       16

40               8’5+5’8  =  60+8         =       68

 

Define N’ on the rational numbers by:

(a/b)’         =       (a’b – b’a)/(b^2)

It is well-defined with respect to rescaling:

((ka)/(kb))’         =  ( (ka)’kb – (kb)’ka) ) / (kb)^2

=  ( (k’a+a’k)kb – (k’b+b’k)ka) ) / (kb)^2

=  ( (k’kba+a’kkb – k’bka - b’kka) ) / (kb)^2

=  ( a’kkb   - b’kka) ) / ((k^2)(b^2)

=  ( a’b   - b’a) ) / (b^2)

=  (a/b)’

 

(4/3)’         =       ( 4’3-3’4) / 3^2  =       (4*3-4)/9             =       8/9

 

(35/6)’       =       (35’6 – 6’35) / (6^2)

                   =       (12*6 – 5*35) / 36                          =         - 103/36

 

(27/4)’       =       (27’4 - 4’27)/(4^2)

                   =       (27*4 - 4*27)/16                                      =       0

 

Exercises for the student: Prove:

 

Theorem: if 4 divides into N then N’ > N

 

Theorem: if P is prime then (P^P)’ = (P^P)

 

Theorem: If N’=N and n’=n then (n/N)’ = 0

 

Theorem: If Q’=0 and R’=0 then (PQ)’=(P/Q)’= 0

 

Theorem: If R’=0 then for any N, (PN)’=P(N’)

 

Speculation: Between any P and Q there is an R such that R’ = 0.

 

Speculation: if N is odd then N’ < N

 

Question: for what N does the sequence N, N’, N’’, N’’’, …

… diverge to infinity? Reach 0 or other fixed value? Cycle?

 

Question: Given N, can you solve M’ = N?

 

Question: What is the Leibnitz prime function for?

No comments:

Post a Comment