Tuesday, October 22, 2013

On Reduction, 2 of 11



Geometry of Reduction and Protraction



     Consider this diagram, the “fish-tail”:


           *     *
           |\   /|
           | \ / |
         x |  *  | y    
           | /|\ |
           |/ |z\|
           *--*--*
             a  b      


     The line segments x and y need not be equal; they and the z segment are assumed only to be parallel; so here is a theorem in affine geometry:


     Theorem:     x <+> y     =     z

     Proof:

     By similar triangles:
          
           x/(a+b)  =  z/b

           y/(a+b)  =  z/a

     Reducing equals with equals, we get:

           x/(a+b)  <+>  y/(a+b)  =   z/b  <+>  z/a

     Therefore:

           (x <+> y)/(a+b)  =   z/(b + a)

     The left side follows from the common denominators law, the right side follows from the common numerators law. Cancelling (a+b), we get:


           x <+> y   =   z


     QED. 
     From this it follows that  y = z <-> x   and   x = z <-> y .

No comments:

Post a Comment