4.
The Mediant
Define the
“mediant” M(x,y,z) thus:
M(x,y,z) =
(x +
(y{+}z)) {+} (y + (z{+}x)) {+} (z + (x{+}y))
+
(x +
(y{+}z)) {+} (y + (z{+}x)) {+} (z + (x{+}y))
In logistic, this
translates to:
(x
and (y or z)) or (y and (z or x)) or (z and
(x or y))
and
(x
and (y or z)) or (y and (z or x)) or (z and
(x or y))
-
a sing-song version of the majority operator.
Mediant equals:
(xy+yz+zx)
/ (x+y+z)
It also equals:
(xy{+}yz{+}zx)
/ (x{+}y{+}z)
This is also an
identity:
M(x,y,z) =
(x {+}
(y+z)) + (y {+} (z+x)) + (z {+} (x+y))
{+}
(x {+}
(y+z)) + (y {+} (z+x)) + (z {+} (x+y))
Mediant has
these laws:
M(a, -a, a) = -a
M(b,
-b, a) = -b2/a
Geometric
Mean:
M(1
, b , b2) = b
M(a
, ab , ab2) = ab
M(a2
, ab , b2) = ab
M(a,
root(ab) , b) = root(ab)
Recall:
M(a,
a, a) = a
Multiplication
distributes:
k*(M(x,y,z)) = M( kx
, ky , kz )
Left
Division Distributes:
k/(M(x,y,z)) = M( k/x , k/y , k/z )
Additions:
M(x,0,y)
= x {+} y
M(x,∞,y) = x
+ y
Triple
Product:
M(x,y,z)*(x+y+z)*(x{+}y{+}z) = xyz
Cancellation:
M(x,
y, M(-x, -y, z)) = z
Transposition:
M(x,y,z)
= w if and only if z
= M(-x,-y,w)
Swapping:
M(x,y,z)
= w if and only if M(x,y,-w) = -z
Hyperbolic
Associativity:
M(x,
y, M(a,b,c)) = M(a, b, M(x,y,c)) if and only if xy = ab
No comments:
Post a Comment